On Harmonic Index and Diameter of Unicyclic Graphs

Authors

  • L. Benedict Michaelraj Joseph’s College
Abstract:

The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)}  $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfrac{1}{2}+dfrac{2}{3(n-2)}$, where $n$ is the order and $D(G)$ is the diameter of the graph $G$.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

On the harmonic index of the unicyclic and bicyclic graphs

The harmonic index is one of the most important indices in chemical and mathematical fields. It’s a variant of the Randić index which is the most successful molecular descriptor in structure-property and structureactivity relationships studies. The harmonic index gives somewhat better correlations with physical and chemical properties comparing with the well known Randić index. The harmonic ind...

full text

The smallest Hosoya index of unicyclic graphs with given diameter∗

The Hosoya index of a (molecular) graph is defined as the total number of the matchings, including the empty edge set, of this graph. Let Un,d be the set of connected unicyclic (molecular) graphs of order n with diameter d. In this paper we completely characterize the graphs from Un,d minimizing the Hosoya index and determine the values of corresponding indices. Moreover, the third smallest Hos...

full text

The Harmonic Index of Unicyclic Graphs with given Matching Number

The harmonic index of a graph G is defined as the sum of weights 2 d(u)+d(v) of all edges uv of G, where d(u) and d(v) are the degrees of the vertices u and v in G, respectively. In this paper, we determine the graph with minimum harmonic index among all unicyclic graphs with a perfect matching. Moreover, the graph with minimum harmonic index among all unicyclic graphs with a given matching num...

full text

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

full text

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

full text

On the harmonic index and harmonic polynomial of Caterpillars with diameter four

The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue None

pages  115- 122

publication date 2016-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023